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ABSTRACT
Using the simple vehicle of tridiagonal Toeplitz matrices, the
question of whether one must pivot during the Gauss elimination pro-
cedure is examined. An exact expression for the multipliers encountered
during the elimination process is given. It is then shown that for a
prototype Helmholtz problem, one cannot guarantee that elimination with-

out pivoting is stable.
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1. MULTIPLIERS IN GAUSS ELIMINATION

It has been conjectured that when Gauss elimination is applied to the
linear algebraic systems resulting from discretizations of Helmholtz type
differential equations,l the elimination process may proceed without the
need for pivoting for small enough grid sizes. The main goal of this note
is to show that in general this conjecture is false. This is not a question
of the near singularity of the matrix in the case of the frequency parameter
w being near an eigenvalue of the discrete Laplacian operator. The resuits
below apply most particularly to the case where w 1is well away from such
an eigenvalue so that the matrix in question is not even approximately sin-
gular. The vehicle we use is that of tridiagonal Toeplitz matrices, and
the need for pivoting is studied by examining the multipliers encountered
when the elimination process proceeds without pivoting.

Consider the Toeplitz tridiagonal matrix

2 and cos[jm/(n+ 1)

When a#0 this matrix is singular only if 4bc > a
= -a/2(bc)1/2 for some integer j between 1 and n. If a=0, the malrix
is also singular whenever n 1is odd. It is easily shown, e.g. by induction,
that if we attempt to reduce this matrix to upper bidiagonal form without any
pivoting, then the multiplier mj encountered when we use the jth row to
eliminate the (j+1,j) element of (1) satisfies the difference equation



mj = C/(a-mJ_lb), j= 1,2,..-,"-1; mo = 0 (2)

where n is the dimension of the matrix (1). Further, it can be shown,
e.g. again by induction, that these multipliers may be expressed in the

form
m. = cEj_]/Ej , 3 =1,2, 300050 =1 (3)

J

where the Ej's satisfy the linear recurrence relation

Substituting €, = A in (4) yields that

] 2 1
X],Z = E[a + (a° - 4bc) /2] .
Then, using the initial conditions E0 =1 and E] = a yields
JH g
f.= 24— | §=0,1,2,... .
J Ay = A
g 2

Then, from (3)

- Jo_ 3 Jt1 g+l I -
m c (2 xz)/(x] A5 ), i=1,2,3,...,n-1.

Letting A, = expla + 8) and Ay = exp(-a + B) we are easily led to




m, = (c/b)'/2 sinh[aj)/sinhla(j + 1)1, (5)

j=],2;3s---,n'],

where
cosh o = a/2(bc)]/2 . ‘ (6)

Formulas (5) and (6) are valid for general complex a, b, and c .
For a, b, ¢ real there are three cases to consider. The first
2

case is when bc >0 and 4bc > a In this case o 1is imaginary and

(5), (6) become

m; = (¢/b)/% sinlBl/sin(s(j + 1)] (7)

and
cos 8 = a/2(bc)]/2 . - (8)

Now the angle g 1is real. The second case is when bc > 0 and

a2 > 4bc for which (5), (6) apply with o real. The third case is
that of bc < 0 for which o =y - in/2 with y real. Then (5), (6)

become

sinh[yj]/cosh[y(j + 1)] for j even

jb/c|'/% m, = | (9)

cosh(yj]/sinh[y(j +1)] for Jj odd




and

sinh vy = a/ZIbCI]/2 .

The border case between the first and second case, i.e.

yields that

m, = (c/b)

J

while the border case between the second and third cases, i.e.

yields that

m. = c/a .

J

Note that if b =0, (1) is lower bidiagonal while if ¢

upper bidiagonal.

4bc ,

We note that if the eliminatijon proceeds without pivoting, we have

that the matrix (1) has the factorization

where u] =a and

Clearly

the stability of the elimination process 1is controlled by the size of
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the multipliers my for if the mj's are large, there will be accuracy

lost in the calculation of the uj's .

2. PROTOTYPE HELMHOLTZ PROBLEM

Consider the prototype Helmholtz equation for the function u(x)

Uy T wzu = f(x) ,0<x<d

(13)

u(0) , u(d) given

where w is the given constant frequency. A simple centered difference
approximation yields a linear system with a coefficient matrix of the
form (1) where a =2 - w2h2 s, b=c=-1 and h=4d/(n+ 1) . Here
we have subdivided the interval [0, d] into (n + 1) equal subinter-
vals of length h . We have, for h sufficiently-small, that
0<a=2-uh’ <2 and that bc =1 and a’ < 4bc so that (7), (8)
apply. .

‘The eigenvalues of the operator (13) are given by 52n2

/d2 for
s=1,2, 3,... . Nowlet ku/d < w< (k +1)n/d , i.e. w2 is between

the k-th and (k + 1)-st eigenvalue of (13), so that
kn/(n + 1) < wh < (k +1)n/(n + 1) . Recall that n is the dimension

of our matrix so that we wish to examine the multipliers mj s 1 <Jj<n-1.
Now as j ranges from 1 to (n - 1), (j +1)8 ranges over an

interval at least as large as

[2(k + )a/(n + 1) , (n = 1) kn/(n + 1)] .



Thus for n large, i.e. h small, (j + 1)8 ranges over an interval
which includes the first k multiples of = . This remains true no
matter how small h becomes. Thus regardless of how sﬁa]] h iS,
the possibility exists that for some j , (j + 1)8 may be very close
to a multiple of = ; indeed if may equal such a number. Therefore some
multiplier mj » given by (7), may become arbitrarily large. Note that
if k=0 so that w < nd , i.e. the problem (13) is positive definite,
then B8(j +1) <= for 1 <j<n-1 so that the multipliers cannot
become large. Of course, for a given w and h , the multipliers may
be well behaved, even if « is such that our problem is indefinite.
However, as indicated above, in general this cannot be guaranteed.
Further insight may be gained by considering perturbations of the
parameter w . Suppose w and h are such that g = 7n/{(2 + 1) exactly
for some ¢ such that 1 <2 <n -1 . For h small we have
B8 = wh = wd/(n + 1) and therefore

"

od/n + )Y a/le +1) or (£+1) ¥ a(n+ 1) ud .

Therefore for h small, n 1is large and ¢ = 0(n) = 0(1/h) . For

such B8 , we have m, = . Now let us perturb the frequency o ; we

let
wy 7 w(l + ew')

where ' = 0(1) and ¢ << 1 . It is then easy to show that



and

Me=1 = 2 -2 -1’ + 0(82 +he+ eh + 63/h) | (15)
T - w'e

Clearly as e~ 0 , Wy Fw o, My and m,.1 > 2 . _
We now balance ¢ against 1/h . First, choose ¢ = O(hz) , that

is, let wy = w(l +u'h’) . Recalling that & = 0(1/h) , we have from

(14), (15)

=2 + 0(h)

m 2/(2 +1) +0(1/h) and m

[} 2-1

g-1 1s still bounded while m, » which was infinite before we

perturbed w , is now 0(1/h) . Perhaps this is tolerable if h 1is not

so that m

too small.

Now choose ¢ = 0(h) , i.e. w; = w(l +w'h) . Then (14), (15)

yield that

= - | _2-(2-1)ha'
M T+ T (gF R tOWR) and m T-ahe ¢ 0

+

1/2d we have that ghu' < %f so that m,_] as

If we choose w

well as m,are bounded independent of h . Thus a choice of wy = w(1 + h/2d)

will reduce m, without causing a catastrophe with m,] -

It is easy to show that if u(x; w) 1is the solution of (13), then

if we vary w we have that



u(x; m-') - u(x; w) = O(w-l - w) . (16)
Therefore, if we choose ¢ = O(hz) we have that
. ) - 2
u(x; w]) - u(x; w) = 0(h") ,

an error which is of the same order as the discretization error of the
scheme employed above. Therefore we may reduce an infinite multiplier
. to one with magnitude.of 0(1/h) by perturbing the frequency in such

a manner so that any error introduced is of the same order as the dis-
cretization error. On the other hand, if we wish to reduce an infinite
multiplier to one with magnitude of 0(1) , then we must ﬁerturb the
frequency, and by (16) the solution, by O0(h) , an error larger than

the discretization error.

3.  UPWIND DIFFERENCES

We briefly examine a second example which may also be aha]ySed

using the well known von-Neumann stability theory.. Consider the proto-

type convection-diffusion equation2

u ., -V u, = f(x) in 0 <x<d

) —

(17)

u(0), u(d) given; V >0 .

If we approximate both Uy x and. Uy by central difference quotients



we are led to a system with coefficient matrix of the form (1) with
a=-2/Rh ,b=1/Rh% -V/2h and c = 1/Rh% + V/2h . Thus
be = [1 - (RVh/2)21/(RhE)2 . If RVh/2 <1, i.e. the well known? "cel]
Reynolds number" condition is satisfied, then bc > 0 and a? > abc
so that (5), (6) apply and the multipliers are well behaved. (This
conclusion can of course also be reached by noting that if RVh/2 < 1 ,
. the matrix is diagonally dominant.) On the other hand, if RVh/2 > 1
so that the cell Reynolds number condition is violated, bc < 0 and
the multipliers may become large. This is easily seen in the limit
R~e (with V, h fixed) for which m, » = .

Now consider an "upwind differencing“vscheme2 in which Uy is
approximated by the backward difference (”j - uj_])/h . We are then
led to a = ~2/Rh® - V/h , b = 1/Rh® and c = 1/Rh% + V/h . Then
bc = (1/Rh®)2(1 + RVh) > 0 and a° > 4bc for all R, h and V .
Therefore (5) and (6) apply and the multipliers are well behaved. In
the 1imit R » » it is easy to show that the multipliers tend to unity.
Thus, there is no cell Reynolds number condition when upwind. differencing

js used on the convection term. We note that once again this conclusion

may be deduced from the diagonal dominance of the matrix.
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